Wiirttemberg

Duale Hochschule

Baden-
Stuttgart

S & PDaneys ros

1/2022

language

The
Prof. Dr. habil. Martin Pliimicke, Etienne Zink

Ineer
-TX

INSIGHTS

=4
<
=
@
(<P}
T
+~
Hqv)
i
)}
-~
qe}
Fr
—
(B}
H®)
(B}
—
(B}
—
(-
(B}
=
—
<
@
wn

Eng
Java

Etienne Zink, Student im 6. Semester des Studiengangs Informatik, hat
sich in seiner Studienarbeit mit dem Thema ,Heterogene Ubersetzung
echter Funktionstypen in Java-TX* beschaftigt. Die Studienarbeit fand im
Rahmen der Forschung zur Programmiersprache Java-TX am Campus
Horb statt.

Professor Martin Plimicke lehrt und forscht im Studiengang Informatik am
Campus Horb der Dualen Hochschule Baden-Wirttemberg Stuttgart. Die
Schwerpunkte liegen im Bereich Programmiersprachen. Gemeinsam mit
seinen Doktoranden und Studierenden entwickelt er JAVA-TX als Erweite-
rung der Programmiersprache Java.

Duale Hochschule Baden-Wiirttemberg Stuttgart — Campus Horb
Florianstraflte 15
72160 Horb am Neckar

E-Mail: m.pluemicke@hb.dhbw-stuttgart.de

Java-TX: The language

Zusammenfassung

Java-TX (TX steht fiir Type eXtended) ist eine Erweiterung von Java, deren
wesentliche neue Eigenschaften globale Typinferenz und echte Funktion-
stypen sind. Funktionstypen werden in Java-TX ahnlich wie bei Scala
eingefuihrt. Zusatzlich werden sie in das Zieltypen-Konzept von Java in-
tegriert, wie es im sogenannten Stawman-Ansatz vorgeschlagen wurde.
Diese Erweiterungen filhren zu einer neuen Uberladungseigenschaft, die
Methodendeklaration mit Durchschnittstypen erlaubt. Darliber hinaus
haben Java-TX-Methoden allgemeinste Typen. Zusétzlich werden Typ-
parameter von Klassen und Methoden automatisch generiert. SchlieBlich
werden Parameter von Funktionstypen heterogen Ubersetzt.

Abstract

Java-TX (TX standing for Type eXtended) is an extension of Java. The
predominant new features are global type inference and real function types
for lambda expressions. These function types are introduced in a similar
fashion as in Scala but additionally integrated into the Java target-typing
as proposed in a so-called strawman approach. These extensions lead
to a new, more powerful overloading mechanism, which means that the
type of a method declaration could be an intersection of method types.
Furthermore, there is a principal type property for Java-TX methods. Ad-
ditionally, the type parameter of classes and their methods are generated
automatically. Finally, the type parameters of function types are translated
heterogeneously.

1 Introduction but neither covariance

.) . Vector<Integer> <" Collection<Object>
Since version 1.5 the programming language Java

has been extended by incorporating many fea- nor contravariance

tures from functional programming languages.

Version 1.5 saw the introduction of generics. Vector<Object><" Collection<Integer>
Generics are known as parametric polymorphism
in functional programming languages. In con-
trast to functional programming languages such
as Haskell or SML, object-oriented languages
like Java allow subtyping and states of objects.
Therefore, the variance of type arguments has to
be considered. In PIZZA, the first approach of
parametric polymorphism in Java-like languages,
the arguments were declared as invariant, which
means for Vector<T><*!Collection<T> and
Integer <*Object holds Local type inference was introduced in the ver-
sions 5, 7, and 10. In Java 5 the automatic deter-
mination of parameter instance was introduced. In
1 <* stands for the subtyping relation. Java 7 the diamond operator was introduced. In

is correct. Invariance of type arguments is a
strict restriction. Therefore, use-site variance by
so-called wildcards was introduced in Java 5. In
some cases, wildcards allow covariance or con-
travariance, respectively. In Java 8 lambda ex-
pressions were introduced, but not real function
types. The types of lambda expressions are de-
fined as target types, which are functional inter-
faces (essentially interfaces with one method).

Vector<Integer> <*Collection<Integer>
g g

Engineering INSIGHTS

source := classx*

class := Class(cname, [generics, | extends(ctype), fielddecls, methoddecl?x)
ctype := Type(cname, typex)

type := ctype | tvar

generics := (tvar,extends(tvar | Object))x*

fielddecl := Field([type,]var[,expr])

methoddecl := Method([generics, |[type,mname, (var[: type])x, block)

block
stmt

:= Block(stmtx)

:= block | Return(expr) | While(bexpr, stmt) | LocalVarDecl([type, |var)

| If(bexpr,stmt[,stmt]) | EmptyStmt | stmtexpr
lambdaexpr := Lambda((var|: type])x, (stmt | expr))

stmtexpr := Assign(vexpr, expr) | MethodCall(iexpr, mname, exprx) | New(type)
vexpr := LocalVar(var) | InstVar(iexpr,var)

iexpr := vexpr | lambdaexpr | stmtexpr | Cast(type,iexpr) | this | super
expr := iexp | bexp | sexp®

Figure 1: The abstract syntax of a core of Java-TX

Java 10, finally, the var keyword for types of local
variables was introduced [7].

Up until now the features of global type inference
(no type declarations are necessary without los-
ing static typing property) and real function types
have not been addressed in Java.

This paper is a summary of the previous re-
search on Java-TX. After definition of the lan-
guage (Sec. 2) we begin by expanding local type
inference to global type inference (Sec. 3). We
then extend the Java overloading mechanism of
method names to overloaded method declara-
tions for which we introduce intersection types
(Sec. 4). We go on to give a principal type prop-
erty for Java-TX methods and fields (Sec. 5). Ad-
ditionally, we integrate target-typing for lambda
expressions and real function type as described
theoretically in the strawman approach [16, 30]
(Sec. 6). We subsequently present the feature
of generated generics of classes and its meth-
ods (Sec. 7). Finally, we integrate the heteroge-
neous translation of type parameters into Java-TX
(Sec. 8).

2 The language

The language Java-TX is presented in Fig. 1. In
this paper we treat Java-TX in an abstract rep-
resentation of a core of Java 8. Beside some
trivia we reduce the language by two essential
features, exceptions and generics bound by non
type-variable types (only type variables as bounds
are allowed). Furthermore, basic types (int,

float, bool, ...) were left out, such that the
boxed variants have to be used. But the literals
1,2,3,..., true, false are still allowed. The op-
tional type annotations [type] are the types, which
can be inferred by our type inference algorithm
(cp. Section 3).

The Java-TX type system correspond substan-
tially to the original Java 8 type system as given
in [10]. We extend the type system by introduc-
tion of real function types [29].

3 Global type inference for Java-TX

Global type inference allows us to leave out all
type annotations. As in functional programming
languages like Haskell, the compiler similarly de-
termines a principal typing, such that Java-TX is
statically typed as original Java. Let us first con-
sider a simple example.

Example 3.1. Let the class Fac (Fig. 2) be given.
It is the simple iterative implementation of the fac-
torial function. The return and the argument type
of getFac are left out. The type inference algo-
rithm has to infer the types. The types are de-
termined by the declaration of res and the over-
loaded operator * . In order to reduce the com-
plexity of the type inference algorithm for over-
loaded operators in the same way as for over-
loaded methods, only types are inferred which are
explicitly imported by the keyword import. There-
fore for getFac the typing

Java-TX: The language

import java.lang.Integer;
class Fac {

getFac (n){

var res = 1;

var i = 1;

while (i<=n) {
res = res * 1i;
i++;

}

return res;

Figure 2: The class Fac

java.lang.Integer
getFac(java.lang.Integer n)

is inferred.

Before we consider a more complex example we
shall offer a formal definition of typed identifiers
(variables and method names) in Java-TX.

Definition 3.2 (Types of identifiers). For identi-
fiers in Java-TX programs the types are defined
as follows:

v : 0: Type of local variable v.

c<T < T">.f:0: Type of a field f of the class cl
with the generics T bound by T'.

A<T <T'>m: <R<R'>(0,...,0,)—0: Type of
a method m with generics R bound by R’ of
the class cl with the generics T bound by T".

cd<T<T'>m <R <R/1 >((61’1, ey 91’71)—>91)
&...&
<Ry, <R, >0, 0mn)—0m):

Intersection type of the overloaded method
m.

Let us consider a second more complex exam-
ple.

Example 3.3. The program in Fig. 3 is given. The
class Matrix is implemented as an extension of
Vector<Vector<Integer>>. The method mul im-
plements the multiplication of two matrices. An
obvious typing of mul would be

Matrix mul (Matrix m)

4 With Z we denote in this paper tuples (z1, ..
variables, terms, etc.

.,xn) Of types,

import java.util.Vector;

class Matrix
extends Vector<Vector<Integer>> {
mul (m) {
var ret = new Matrix();
var i = 0;
while(i < size()) {
var vl = this.elementAt(i);
var v2 = new Vector<Integer>();
var j = O0;
while(j < vi.size()) {
var erg = 0;
var k = 0;
while(k < vi.size()) {
erg = erg
+ vi1.elementAt (k)
* m.elementAt (k)
.elementAt (j);
k++; }
v2.addElement (erg) ;
j+;)
ret .addElement (v2);
i++; 3
return ret; } }

Figure 3: The class Matrix

The question is whether this typing is the only pos-
sible typing. If not, then the question to be asked
is whether it is the principal typing. It is easy to
see that there are other correct typings, e.g.

Matrix mul (Vector<Vector<Integer>> m)

or
Vector<Vector<Integer>>
mul (Vector<Vector<Integer>> m)
are correct. But
Matrix mul (Vector<? extends

Vector<? extends Integer>> m)

is also correct. We collect all correct typings of
mul fo an intersection type of mul, given in Fig. 4.

We remember the usual subtyping definition for
function types.

Definition 3.4 (Subtyping relation <* on function
types). For two given functions types

(Tl,...,Tn) — To and(@l,...,ﬁn) — bp
the following is valid:
(Tl,...,Tn)*)To S* (017---79n)*>00

/ffGZ <*r; andTO <*#b.

Engineering INSIGHTS

Matrix.mul : Matrix — Matrix

& Matrix — Vector<Vector<Integer>>

& Vector<Vector<Integer>> — Matrix

& Vector<Vector<Integer>> — Vector<Vector<Integer>>

& Vector<Vector<?extends Integer>> — Matrix

& Vector<Vector<? extends Integer>> — Vector<Vector<Integer>>

& Vector<? extends Vector<Integer>> — Matrix

& Vector<? extends Vector<Integer>> — Vector<Vector<Integer>>

& Vector<?extends Vector<?extends Integer>> — Matrix

& Vector<?extends Vector<?extends Integer>> — Vector<Vector<Integer>>
& Matrix — Vector<? extends Vector<?extends Integer>>

& ...

Figure 4: Intersection type of mul

Regarding this definition, a first line of thought in
defining a principal type is the intersection type of
all minimal elements of these function types.

Vector<;Vector<, Integer>>—>Matrix5

is the subtype of all other types (minimum in the
subtyping relation). This means that the domain
of the function is maximal and the range minimal.
Therefore this should be the principal type of mul.

Before we go on to offer a formal definition of the
principal type in Section 5, we shall consider the
type inference algorithm and the extended over-
loading mechanism of Java-TX.

3.1 The type inference algorithm

Here we would like to present a short overview
of the type inference algorithm. The input is the
abstract syntax tree of the corresponding Java
class. The type inference algorithm consists of
two steps:

Tree traversing: In a traversing of the abstract
syntax tree, a type is mapped to each node
of the methods’ statements and expressions.
If the corresponding types are left out, a type
variable is mapped as type placeholder. Oth-
erwise, the known type is mapped.

During the traversing a set of type constraints
{ty < ty’ } is generated. The constraints rep-
resent the type conditions as defined in the
Java specification [10]. For more details see
the function TYPE in [27].

5 »Type and " Type are abbreviations for 7 extends T'ype and
? super T'ype, respectively.

Type unification: For the set of type constraints
{ty <ty’} general unifiers (substitution) o
are demanded, such that

o(tyl) <*o(ty').

The result of the type unification is a set of
pairs

{(T<1")},0),
where { (T' < T") } is a set of remaining con-
straints consisting of two type variables and
o is a general unifier.

The type unification algorithm is given in [26,
33]. There we proved that the unification is
indeed not unitary, but finitary, meaning that
there are finitely many general unifiers.

Let us consider the application of the type infer-
ence algorithm to the factorial example (Example
3.1). Note that we omit the import statements for
the sake of readability in the further examples.

Example 3.5. First, we present the essential type
variables which are mapped to nodes of the
method getFac:

class Fac {
N getFac(O n) {
P res = 1;
R i = 1;
while ((i::R) <= (n::0))::T A
(res::P)=((res::P)*(i::R))::U;
(i::R)++;
}
return(res::P);
}
}

The generated constraints are

{(P=N),(U < P),(0 < java.lang.Number),
(R < java.lang.Number,

Java-TX: The language

(java.lang.Boolean = T),
(java.lang.Integer = U),
(R < java.lang.Integer),
(P < java.lang.Integer) }

The result of type unification is given as:

{(@,[(U — java.lang.Integer),
(P — java.lang.Integer),
(R — java.lang.Integer),
(O + java.lang.Integer),
(N +— java.lang.Integer),
(T — java.lang.Boolean)] }

In this example, no constraints consisting only of
type variables remain. Furthermore, there is only
one general unifier.

If we instantiate the type variables by the deter-
mined types, we get:

class Fac {
Integer getFac(Integer n) {
Integer res = 1;
Integer i = 1;
while ((i::Integer)
<= (n::Integer)) ::Boolean
{
(res::Integer) =
((res::Integer) * (i::Integer))
::Integer;
(i::Integer)++;
}

return(res::Integer); } }

The unification in the above example has one so-
lution. If there would be more than one solution,
there could be more than one principal typing of
the method. We consider this in Example 4.1.

The set of remaining constraints which consist
only of type variables is empty. If this set would
not be empty, then type parameters (generics) of
the class or of its method would be generated. We
consider this in Section 7.

4 Overloading

The following example serves to show the over-
loading mechanism.

Example 4.1. Let the classes OL and OLMain be
given.

class 0L {
m(Integer x) { return x + x; }

m(Boolean x) { return x || x; }

}

class 0OLMain {
main(x) {
var ol = new O0L();
return ol.m(x); } }

This example illustrates the extended overload-
ing mechanism of Java-TX. In the class OL the
method name m is overloaded by two different
method declarations as in standard Java. In the
class OLMain an instance of OL is created and on
the instance the overloaded method m is called.
This means the only method declaration main is
overloaded by both types. The type ofmain is then
given as the intersection type:

OLMain.main Integer — Integer

& Boolean — Boolean

If we leave out the type annotations in OL and add
some import declarations:

import java.lang.Integer;
import java.lang.Double;
import java.lang.String;
import java.lang.Boolean;

class 0L {
m(x) { return x + x; }

m(x) { return x || x; }

}

the type of the first method m is:

OL.m Integer — Integer
& Double — Double

& String — String,

as + is an overloaded operation symbol. The sec-
ond method m has the unchanged type

OL.m Boolean — Boolean.

This means that the main declaration is over-
loaded by all four types of both methods m:

OLMain.main Integer — Integer
& Double — Double

& String — String
&

Boolean — Boolean

Engineering INSIGHTS

This example shows the extended overloading
mechanism in Java-TX. Standard-Java only al-
lows the overloading of method identifiers, mean-
ing that multiple method declarations with the
same identifier have to be declared (cp. method
m with explicitly declared types in the class OL).
In contrast, in Java-TX one declaration could be
overloaded, which means that one declaration
has different types (cp. method main in the class
OLMain).

In the following section we shall define a principal
type for Java-TX programs which is the result of
the type inference algorithm.

5 Principal type

In [6] for functional programs (without subtyping)
a principal type is defined as:

A type scheme for a declaration is a principal type
scheme, if any other type scheme for the declara-
tion is a generic instance of it.

We combine this definition of principal type
scheme for functional programs with the idea that
the principal types are the minimal elements in the
subtyping relation:

An intersection type scheme with a minimal num-
ber of elements for a declaration is a principal type
scheme, if any other type scheme for the declara-
tion is a supertype of a generic instance of one
element of the intersection type scheme.

Following this definition, in Example 3.3

Matrix.mul :
Vector<;Vector<s;Integer>>—Matrix

and in Example 4.1

OLMain.main Integer — Integer
Double — Double
String — String

Boolean — Boolean

il

are principal types.

The following example shows that this definition of
the Java-TX principal type has to be refined if we
consider overlapping arities of methods.

Example 5.1. Given the following Java-TX pro-
gram:

import java.util.Vector;
import java.util.Stack;

class Put {
<T> putElement (T ele, Vector<T> v) {
v.addElement (ele);
}

<T> putElement (T ele, Stack<T> s) {

s.push(ele);
}

main(ele, x) {
putElement (ele, x);
}
}

The inferred intersection type of main is

Put.main : (T,Vector<T>)—void
& (T, Stack<T>)—void.

With the given definition the principal type would
be (T,Vector<T>)—void. This is not correct as
the stack’s application would disappear. There-
fore, we have to refine the definition by consider-
ing its call graphs.

Definition 5.2 (Principal type of Java methods).
An intersection type of a methodm in a class c1

cl<T < T'>m:<R; < RII >(((91,1, ey 917n)—>91)
&.. &
<Ry <R >0ty Oy)—0m)

is called principal if the number of elements of the
intersection is minimal and for any correct type an-
notated method declaration

rty m(ty! al,...,tyn an){...}

there is an element ((0; 1, ..., 0, .,)—0;) of the in-
tersection type and there is a substitution o, such
that

0(0;)<*rty, ty1<*oc(b;1),...,tyn<"0c(b;)

and the call graphs of (0;1,...
(tyi,..., tyn)—rty are equal.

s Qi,n,)—>9, and

Example 5.3. Continuing Example 5.1 the princi-
pal type of main is

Put.main : (T,Vector<T>)—void
& (T, Stack<T>)—void

as the call graphs of (T,Vector<T>) — void and
(T, Stack<T>)—void differ (cp. Fig. 5).

Java-TX: The language

olass Put

main {ele, =) |
putElament (gle, x);

|

<T» putElement (T 2le, Vectkor=T» w) |
v _addElemeant (ela] ;

|

olass Vastar<b:-

i

olass Put

t

woid addElement (E obkij) |

i

olass Fut

main {ele, =) |
putElament (2le, x);

|

«T> putElement (T =21le, Stack«<T> =) |
=5 _pushiele] ;

slass StaskeE:s

i

olass Put

i

E pushiE ele) {

)

Figure 5: Call graphs of the method main in the class Put

A detailed overview of call graphs and the corre-
sponding algorithm can be found in [25].

Finally, we give the definition of the principal type
of fields in Java-TX classes. It is possible to as-
sign a lambda expression to a field of a Java class.
Therefore it make sense to define a principal type
for fields.

Definition 5.4 (Principal type of Java fields). A
type 6 of a field £ in a class c1

A<T < T'>f:0

is called principal if for any type correct field dec-
laration

ty £;
there is a substitution o, such that
o(0)<*ty
is valid.

As fields cannot be overloaded no intersection
types are necessary.

5.1 Type inference and principal type

Principal types in Java-TX can be inferred for
nearly all methods. There are only two restric-
tions. On the one hand type inference is unde-
cidable in the presence of polymorphic recursion
as in all languages with global type inference fol-
lowing the approach of [6]. On the other hand,

Java type-check become undecidable in the pres-
ence of F-bounded polymorphism in combina-
tion with covariance and contravariance by bound
wildcards. This is shown in [11]. There is even a
reduction from the halting problem of Turing ma-
chines to subtype checking in Java.

The next example shows the consequence of
polymorphic recursion.

Example 5.5. Let the class Map be given:

class Map {

<T> List<T>
map (Function<T,T> f, List<T> 1){
for (int i=0; i < 1l.size(); i++) {
l.set(i, f.apply(l.get(i)));
return 1;

}

List<Integer>
addInt5ToList (List<Integer> 1) {
return map(x -> x+5, 1);

}

List<String>
addStrb5ToList (List<String> 1) {
return map(x -> x + "5", 1);

If we leave out all type annotations of the methods
in the class Map the type inference goes wrong
due to the fact that the type variable T could either
be instantiated by Integer or by String but not
by both at once.

The difference between the explicitly typed class
and the typeless class in this example corre-

Engineering INSIGHTS

sponds to the difference of the Damas-Milner
type system [6] and the Mycroft-Milner type sys-
tem [19], where Henglein reduces the type infer-
ence problem of the Mycroft-Milner type system
to semi-unification [12] and semi-unification has
been shown to be recursively undecidable [15].

F-bounded polymorphism in combination with
bound wildcards in Java allows recursion in the
type arguments of parametrized type. E.g. for

class Integer implements
Comparable<Integer> {...}

it holds true that:

Integer <* Comparable<Integer>

<* Comparable<;Integer>

<* Comparable<;Comparable<Integer>>
<* Comparable<;Comparable<;Integer>>
<* Comparable<;Comparable<;...>>
<L

and

< Comparable<7Comparab1e<?...>>

< Comparable<7Comparab1e<?Integer>>
<* Comparab1e<?Comparab1e<Integer>>
<* Comparable<’Integer>

This means that for instance the constraint
Integer < T as well as the constraint T <
Comparable<? super Integer>, respectively, have
infinite result sets, respectively.

In Java-TX the problem is solved by capping the
infinite chains. This means if a type is contained
in an argument of a supertype or of a subtype,
respectively, then these types and all supertypes
or all subtypes, respectively, are excluded.

In the first constraint Integer < T the type
Integer is contained in its supertype Comp-
arable<Integer>. Therefore Comparable<In-
teger> and all supertypes of Comparable<In-
teger> are excluded. In the second con-
straint 7 < Comparable<’Integer> the type
Comparable<’Integer> is contained in Comp-
arable<’Comparable<’Integer>>. Therefore the
type Comparab1e<?Comparab1e<?Integer>> and
its subtypes are excluded.

Following this, the type inference in the class
IntComparable

class IntComparable {
void m(k) {
k = 1;
}
}

determines the type Integer for the argument k
as all other correct types Comparable<Integer>,
Comparable<? extends Integer>, are ex-
cluded.

6 Real function types

In Java 8, lambda expression has indeed been in-
troduced, but not function types. Instead, there
are functional interfaces as target types of lambda
expressions. There are many disadvantages be-
cause of the lack of function types. Java-TX coun-
ters these disadvantages by introducing function
types in a similar way as in Scala without losing
the convenience of functional interfaces as target
type of lambda expressions [29]. Java-TX imple-
ments the so-called strawman approach, which
was theoretically given in [16, 30].

In Java 8 function types are simulated in the pack-
age java.util.function:

public interface Function<T,R> {
R apply (T t);
}

public interface BiFunction<T,U,R> {
R apply(T t, U u);
}

There are some inconveniences.

Subtyping

Although the following holds true for subtypes (cp.
Def. 3.4)

(ﬂwujwyﬂbf(ﬂP”JMH%,ﬂgﬂy
for the functional interface Function

Function<T},Tp> <* Function<Ty,T(>

for T; <*T7, is not correct, as Java has use-site
variance. Therefore, arguments of types without
wildcards are invariant.

Example 6.1. For Integer <* Number <* 0Ob-
ject it holds true that:

Java-TX: The language

Number — Number <* Integer — Object

but

Function<Number, Number> f_NN=...
Function<Integer,0Object> f_I0 = f_NN

is wrong, as

Function<Number, Number> «*
Function<Integer,Object>

This problem could be solved by wildcards. It
holds true for T; <* T :

Function<Ty, Tp>
<* Function<?super T;,? extends T6> ,

for T; <* T!. This means

Function<’Integer,-0bject> f_I0=f_NN

is correct.

Direct application of lambda expressions

In the A-calculus -conversion (direct application
of a lambda expression to its arguments), the fol-
lowing is possible:

(Az.E)arg = Elx/arg].

In Java 8 this lambda term would have the follow-
ing form:

(x -> h(x)).apply(arg);

Such expressions are not permitted. As the
lambda expression has no explicit type, it is not
obvious if the method apply exists at all. This
problem could be solved by introducing a type
cast:

((Function<T,R>)x -> h(x)).apply(arg);

Summary

The drawbacks of the lack of function types are all
solved in Java 8:

Missing function types: The function types
are replaced by the functional interfaces
Bi/Function in the package java.util.
function.

Subtyping problem: The problem of the func-
tional interface’s behaviour differing from the
usual definition of subtyping is solved by us-
ing wildcards.

Impossibility of direct application of lambda

expressions: The impossibility of applying a
lambda expression directly to its arguments
is solved by using type casts.

This means all problems are solvable, but the so-
lutions are not attractive. We therefore introduced
real function types in Java-TX. We extended Java
by two sets of special functional interfaces with
declaration-site variance type parameters:

interface Fun¥$$<-T1, ..., -TN,+R> {
R apply(T1 argil, , TN argh);
}
interface FunVoid#$$<-T1, ..., -T¥F> {
void apply (Tl argl, , TN argh);
}
where

* FunV$$<T}...T)y,To> <* Fun N$$<T;...Tn ,T(>
iff T; <* T}

e In Fun¥$$ no wildcards are allowed.

The Lambda-expressions are explicitly typed by
FunN$$-types.

Example 6.2. Let us consider the changed matrix
program in Fig. 7.

In Java 8 there are two possibilities to type the
field mul:

* Using java.util.function.*:

. . ?
mul :BiFunction<'Vector<;Vector<;Integer>>
?Vector<7Vector<7 Integer>>

7?Matrix>

This type declaration is less readable. In par-
ticular, the mixture of super and extends wild-
cards in the second argument are extremely
unusual.

Engineering INSIGHTS

interface MatrixOperation {

Matrix0P apply(Vector<? extends Vector<? extends Integer>> argil,
Vector<? extends Vector<? extends Integer>> arg2);

Figure 6: Interface MatrixOperation

class MatrixQP
extends Vector<Vector<Integer>> {

mul = (m1, m2) -> {
var ret = new Matrix0P();
var i = 0;

while(i < m1l.size()) {
var vl = ml.elementAt (i);
var v2 = new Vector<Integer>();
var j = 0;
while(j < vi.size()) {
var erg = 0;
var k = 0;
while(k < vi.size()) {
erg = erg
+ vil.elementAt (k)
* m2.elementAt (k)
.elementAt (j);
k++; }
v2.addElement (erg) ;
j++s
ret.addElement (v2);
i++;}
return ret;}

Figure 7: Matrix with lambda expression

» Defining an own functional interface Ma-
trixOperation (Fig. 6):

mul: MatrixOperation

This type declaration is very short, but the
type MatrixOperation hides the most infor-
mation.

In contrast, Java-TX infers the function type:

mul:Fun2$$<Vector<,;Vector<,;Integer>>
Vector<;Vector<;Integer>>
Matrix>

This type is indeed complex, too. But the argu-
ments of the function type Fun2$$ have no wild-
cards. This reduces the confusion.

7 Generalized type variables

In a similar way as in type inference of func-
tional programming languages, free type variables

which are not instanced by other types after type
inference are generalized to generics. In compari-
son to functional programming languages, in Java
subtyping leads to a more powerful generalization
mechanism.

Keeping in mind the result of the type unification
(Sec. 3.1) given as a set of pairs of

* remaining constraints consisting only of pairs
of type variables and a

» most general unifier:
{<{T1<T1/}’01)’ RRE ({Tn<TrlL}aan)}'

In the previous sections we considered the uni-
fiers. In this section we shall consider the remain-
ing constraints. In the existing type inference algo-
rithm of functional programming languages with-
out subtyping (e.g. Haskell or SML) the remaining
type variables are generalized such that any type
can be instantiated if the function is used.

Following up this idea, the remaining type vari-
ables become bound type parameters of the class
and its methods, respectively, where the left-hand
side of a constraint is a type parameter and the
right-hand side is its bound.

There are three possibilities for adapting this con-
cept to Java:

* All in the constraints, connected type vari-
ables are mapped to one type parameter.

* All constraints are transferred to bound type
parameters of the class.

» The constraints are transferred to bound type
parameters of the class and its methods.

We shall see that the third possibility leads to the
principal types. Additionally, due to the Java re-
strictions of type parameters, some type parame-
ters have to be collected to one new type param-
eter. As proposed in the first possibility.

This section is structured as follows: After a moti-
vating example, we present an apportioning of the
type variables to the class and its methods. We
then reduce the respective set of type variables

Java-TX: The language

class TPHsAndGenerics {
id = x -> x3

id2 (x) {
return id.apply(x);}

m(a, b) {
var ¢ = m2(a,b);
return a; }

m2(a, b){
return b; } }

class TPHsAndGenerics {
Fun1$$<UD, ETX> id = (DZP x) -> x;
ETX id2(V x) {
return id.apply(x);}

AB m(AB a, AD b){
AE ¢ = m2(a,b);
return a; }

AT m2(AM a, AI b){
return b; } }

Figure 8: Class TPHsAndGenerics before and after type inference

such that the Java restrictions of type variables
are fulfilled.

Let us start with a motivating example.

Example 7.1. On the left in Fig. 8 a Java-TX pro-
gram is given. The identity function is mapped to
the field id. In the method id2 the identity func-
tion is called. In the method m the method m2 is
called.

The application of the type inference algorithm is
presented on the right, and the remaining set of
constraints of the type unification is:

cs = {AD < AI, V<UD, AT < AE, AB < AM,
DZP < ETX, UD < DZP }.

7.1 Family of generated generics

We divide up the set of remaining constraints cs by
transferring it to a family ¢s’” where the index set is
given as the class name and its method names.

Definition 7.2 (Family of generated generics).
The family of generated generics is defined as

cs' = (csiy)inecLm,
where
CLM = {cl} U{m|m is method in cl}

is the index set of the class name and its methods’
names.

Letcs be a set of remaining constraints as result of
the type unification. cs is transferred to the family
of generated generics cs’ where, the set of gener-
ated generics of the class cs.,, are given as:

« all type variables of the fields with its bounds

* the closure of all bounds of type variables of
the fields with its bounds, and

« all unbound type variables of the fields and all
unbound bounds with Object as bound.

The set generated generics cs,,, of its methods m:
are given, respectively, as:

* the type variables of the method m with its
bounds, where the bounds are also type vari-
ables of the method,

* new constructed pairs T, < T, of type vari-
able Ty, T, of the method m which are in the
transitive closure

Ty <Ry <* Ry < Tp®

where Ry <* Ry € cll,, andm/ is called in m,

« all type variables of the method m with its
bounds, where the bounds are type variables
of fields and

» all unbound type variables of the method
m and all unbound bounds with Object as
bound.

We present the family of generated generics for
the class TPHsAndGenerics from Example 7.1

Example 7.3. The set of remaining constraints

cs = {AD < AI,V < UD,AI < AE, AB < AM,
DZP < ETX,UD < DZP }

of the class TPHsAndGenerics results in the family
of generated generics

6 <* stands for the reflexive and transitive closure of <.

Engineering INSIGHTS

The set of generated generics csipysnscencrics
of the class:

* Type variables of the fields with its bounds:
{UD < DZP}

* Closure of all bounds of type variables of the
fields with its bounds:

{DZP < ETX}

» All unbound type variables of the fields and
all unbound bounds with Object as bound:

{ETX < Object }
The set of generated generics cs', 4,:

* All pairs where the bounds are type variables
of fields:

{V<uD}
The set of generated generics cs,,:
» New pair

{AD < AE}
which is in the transitive closure AD < AT < AE,
where AI € cl!, andm2 is called in m.

» All unbound type variables of the method
m and all unbound bounds with Object as
bound:

{AB < Object, AE < Object }
The set of generated generics cs,,:

 All unbound type variables of the method m
with Object as bound:

{AM < Object,AI < Object }

The mapping of the family to the class and its
methods in the Java-TX program is presented in
Fig. 9, where the bounds Object are left out.

7.2 Java-conforming binary relation of type
parameters

The set of remaining constraints as well as each
element of the family of generated generics are
arbitrary binary relations.

There are two conditions in Java which all mem-
bers of the family of generated generics have to
fulfill:

» The reflexive and transitive closure must be
a partial ordering (the subtyping relation is a
partial ordering).

class TPHsAndGenerics
<UD extends DZP, DZP extends ETX, ETX> {

Funi1$$<UD, ETX> id = x -> x;

<V extends UD> ETX id2(V x) {
return id.apply(x);}

<AD extends AE, AB, AE>
AB m(AB a, AD b){
AE ¢ = m2(a,b);
return a;}

<AM, AI> AT m2(AM a, AI b){
return b;}

Figure 9: Generated generics of the class TPHsAndGe-
nerics

» Two different elements have no common infi-
mum (multiple inheritance is prohibited).

Consider the following lemma:

Lemma 7.4. The reflexive and transitive closure
of any binary relation is a partial ordering if it con-
tains no cycle.

Proof. A partial ordering is binary relation with the
properties reflexivity, transitivity, and antisymme-
try. The first two properties are given as we con-
sider a reflexive and transitive closure. Therefore
a reflexive and transitive closure is no partial or-
dering only if the property antisymmetry is not
given. Antisymmetry is given if and only if there
are no cycles. O

This means that we have to eliminate cycles and
infima to get Java-conforming binary relations.
We will do this by a surjective mapping of con-
nected type variables to a new type variable.

First, we shall consider two examples which result
in non-conforming relations.

Example 7.5 (Cycle). Let the class Cycle be
given:

class Cycle {

m(x, y) {
y = %
X =y
}

Java-TX: The language

For the inferred method parameter m(L x, M y)
we get
esy={(L<M),(M<L)}
But
<L extends M,M extends L>
void m(L x, M y) {...}
is not a correct declaration.

Example 7.6 (Infimum). Letthe class Infimum be
given:

class Infimum {
m(x, y, z) {
y = x5
zZ = X
}

For the inferred method parameter m(L x, M y,
N x) we get

csh ={(L<M),(L<N),(M < 0Object),
(N < Object) }

But

<L extends M, L extends N, M, N>
void m(L x, My, N z) {...}

is not a correct declaration.

The general approach for eliminating cycles and
infima is to equalize elements by a surjective map
h that preserves the subtype relation:

ForT <* T’
WT) < h(T)
holds true.

We shall now present an algorithm which elimi-
nate cycles and infima.

Algorithm 7.7 (Java-conforming relation).

Input: A member of the family of generated
generics C.

Output: An adapted member of the family of gen-
erated generics C and a surjective mapping
h that describes the adaption of C.

Postcondition: C is a minimal adaption such
that it is Java-conforming.
The algorithm:
1. Remove cycles:
Forany (T< K< G<..<T)inC:

— Substitute all type variables of the cycle
with a new type variable X in C.

— Remove all constraints that built the cycle
from C.

— In h all removed type variables of the cycle
are mapped to X.

2. Eliminate infima: Apply the following steps
until no infima are in C':

For any
Constrr ={(T <R),(T<S),...} CC

— Create a new type variable X and create a
new constraint (T < X).

— Add the new constraint (T < X) to C.

— Remove all constraints Constrr from C'.

— All right-hand sides R of all constraints of
Constrr are mapped to X in h and substi-
tuted in C' with X .

Lemma 7.8. Letcs], be a member of the family of
generated generics and h the corresponding sur-
jective map defined by Algorithm 7.7. ForT <* T’
holds true h(T') <* h(T").

Proof. For the removed cycles
T<K<G<..<T
holds true

WMT)=h(K)=h(G)=..=h(T).

For the eliminated infima (T < R), (T < S) holds
true h(S)=h(R)and (h(T)<h(R)),(h(T) <
h(9)). O

In the following examples, we apply the algorithm
to the classes Cycle (Example 7.5) and Infimum
(Example 7.6).

Example 7.9. Applying the algorithm to the class
Cycle we get the surjective mapping h with

hL)=X
hWM)=X

and the adapted class:

class Cycle {
<X> void

y
X

m(X x, X y) {

non

X,
Y

Engineering INSIGHTS

Example 7.10. Applying the algorithm to the
class Infimum we get the surjective mapping h
with

=X
WN)=X

class Infimum {
<L extends X, X>

void m(L x, Xy, X z) {
y = x5
zZ = x;

}

7.3 Further simplifications

Let us consider again the generated generics in
the class TPHsAndGenerics (Figure 9). There is a
class type parameter DZP that is never used. Ad-
ditionally, in the field id, the argument and the re-
sult type differ although the identity functions re-
turn the argument x. It is not clear whether this is
necessary.

Eliminate inner type variables

In the class TPHsAndGenerics the type variable
DZP occurs in the type Fun1$$<DzZP,DZP> of the
lambda expression x -> x as inner type variable
which is generated during the tree traversing of
the type inference (cp. Sec. 3.1). As type vari-
ables of inner nodes are not needed to be de-
clared, we eliminate type variables of inner nodes.
In this step, the properties of the partial ordering
have to be preserved.

Therefore, in the above example UD < ETX follows
from UD < DZP < ETX.

Equalize type variables in contravariant and
covariant position

For the consideration of type variables like UD and
ETX, we need another definition.

Definition 7.11 (Type variables in covariant and
contravariant position). A type variable of an ar-
gument of a function/method is in contravariant
position. A type variable of a return type of a func-
tion/method is in covariant position.

In the type Fun2$$<UD,ETX> of the field id in the
class TPHsAndGenerics the type variable UD is in
contravariant position and ETX in covariant posi-
tion.

Lemma 7.12. Let T be a type variable in con-
travariant position and U a type variable in covari-
ant position. If T < U is valid, then in the sense of
principality of the program the two type variables
T and U can be equalized.

Proof. From the definition of a principal type
(Def. 5.2) it follows that the argument types have
to be maximal and the return type has to be min-
imal. This means that T has to be maximal and
U has to be minimal. Therefore, it follows from
T < U that for the principal type, T = U. O

In the above example, the type variables UD and
ETX can be equalized. Fig. 10, below, presents
the complete simplified class TPHsAndGenerics.
Here, the inner type variables are eliminated and
type variables in contravariant and covariant posi-
tion are equalized.

class TPHsAndGenerics<UD> {
Funi1$$<UD, UD> id = x -> x;

<V extends UD> UD id2(V x) {
return id.apply(x);}

<AD extends AE, AB, AE>
AB m(AB a, AD b){
AE ¢ = m2(a,b);
return a;}

<AM, AI> AT m2(AM a, AI b){
return b;}

Figure 10: The complete simplified class TPHsAndGe-
nerics

Theorem 7.13. Let a Java-TX class

Class(cl, extends(ty), f,Method(my,vr, bl;)

Method(m.,, v, bl))

be given. Furthermore, let

Class(cl, extends(ty), F f,

MethOd(Rl,ml,vl : Al,bll)

Method(R, m, vy, Ap,bly))

Java-TX: The language

be the result of the tree traversing, where
type placeholders are introduced and let (cs,o)
be a result of the type unification of cl
(Sec. 3.1). Finally, letcs’ = { cs;,csy, ... csy,,)
the family of generated generics and cs”’ =
{eslyesy, oo csy) the result family after ap-
plying Algorithm 7.7, eliminating inner type vari-
ables and equalizing type variables in contravari-
ant and covariant position.

Then

Class(cl, csly, extends(ty),o(F) f,

cl»

Method(cs;,, ,o(Ry), m1,v1 : o(Ar),bl1)

Method(cs,, ,0(Ry), mp,vn : 0(Ay),bly))
is a type correct Java program.

Proof. The constraints which are constructed dur-
ing the tree traversing are the type conditions that
corresponds to the type conditions of Java speci-
fication [10]. In [26] we proved that the type unifi-
cation solves the constraints and the algorithm is
sound and complete. This means the Java pro-
gram is type correct if the instantiations for the re-
maining constraints cs, which consists only of type
placeholders, are fulfilled.

Lemma 7.8 and Lemma 7.12 proves that Algo-
rithm 7.7 and equalizing type variables in con-
travariant and covariant position, respectively,
preserves the constraints. Therefore the instan-
tiations of the corresponding members of ¢s” into
the Java program leads to a type correct Java pro-
gram. O

8 Heterogeneous translation of function
types

The actual Oracle’s Java compiler implementa-
tions translate generics in a homogenous way.
This means that all type parameters are erased.
This property is called the type erasure. The main
reason for the type erasure is that the hetero-
geneous translation (preserving the type param-
eters) would request for any type parameter in-
stantiation that its own class be loaded with corre-
sponding type parameters. This would slow down
the runtime.

On the other hand, the type erasure leads to many
disadvantages:

instanceof: Calling the instanceof operator
with a parametrized type as second argu-
ment is not allowed.

Generic Exception: Classes that inherit from
Throwable could not have parameters.

Generic overloading: Overloading a method
with arguments with different parameter
instantiations of the same class is not
allowed.

In [20] for PIZZA a homogenous and a hetero-
geneous translation was described for a Java-like
language. Furthermore, C# uses heterogeneous
translation [14].

In the final version of the concept paper for the in-
troduction of lambda expressions in Java [9] Brian
Goetz offers arguments as to why they left out real
function types: It is unlikely that there would be
a runtime representation for each distinct func-
tion type, meaning developers would be further
exposed to and limited by erasure. For example,
it would not be possible (perhaps surprisingly) to
overload methods m(T->U) and m(X->Y).

As we introduced with the special functional in-
terfaces Fun#¥$$ real function types, so we intro-
duced into Java-TX heterogeneous translation for
these functional interfaces.

In order to gain an understanding of the problem,
let us consider the following example:

Example 8.1. Let the following Java-TX program
be given:

class OLFun {
m(f, x) {
x = f.apply(x+x);
return x;
}
}

For the arguments of m, we get the following typ-
ings:

(Fun1$$<Double, Double>,Double)—Double

&

(Fun1$$<Integer,Integer>,Integer) —Integer
&

(Fun1$$<String, String>,String) — String.

In Java bytecode the type parameters of the
generic types are not considered (type erasure).
Indeed, in bytecode the type parameters are con-
tained in the signatures, but they are not included
in the descriptors. The descriptors are used from
the JVM during runtime. Therefore they are not
used for resolving overloading. They are only

Engineering INSIGHTS

used for the typecheck. The JVM considers only

those descriptions where the type parameters are

erased. For the class OLFun the method headers

in bytecode look like this:

Double m(Funi1$$<Double ,Double>,Double);
descriptor: (LFunl1$$;Double;)Double;

Integer m(Funi$$<Integer ,Integer>,Integer);
descriptor: (LFunl$$;Integer;)Integer;

String m(Funl1$$<String,String>,String);
descriptor: (LFuni$$;String;)String;

As in Example 4.1, this overloading is no problem
either as the method call can be resolved by the
second argument.

But if we erase the second argument

class OLFun {

m(f) {
var x;
x = f.apply(x+x);
return x;
}
}

then the type erasure becomes a problem as the
method headers in bytecode are:

Double m(Funi1$$<Double,Double>);
descriptor: (LFunl1$$;)Double;

Integer m(Funi$$<Integer ,Integer>);
descriptor: (LFunl$$;)Integer;

String m(Funl1$$<String,String>);
descriptor: (LFuni$$;)String;

Now method resolving is no longer possible as all
three methods have the same argument Fun1$$.

This problem could only be solved by heteroge-
neous translations, which preserve the arguments
in the descriptors. Unfortunately, the symbol < is
not allowed in the descriptors. Therefore, follow-
ing [20], we translate a type

FunWV$$<ty1, . . ., tyn,tyo>

to a string

FunV$$$_$ty18_8 ... $_8$ty, $_$tyo$_$

where ty; are the descriptors of the type parame-
ters. Descriptors are used to support the type era-
sure of any type and to differ classes with same
names in different packages. The descriptors are
subjected to the following substitutions:

1. . =/
2. /—$
3. ; —>3%_%

These substitutions are essential, so that the
class name satisfies the Java specifications.

Differing from [20] we leave the class loader un-
changed and for each used type

FunV$$$_8$ty:1$_8$... $_8ty,$_Styo_$

we implement empty interface-files that inherit
from

Funt $$<ty, ..., ty,,tyo> :

interface FunV$$$_$ty1$_$...$_tyN_$tyos$_$
extends FunN$$<tyl,..., tyN,ty0o> { }

Example 8.2. For the class OLFun in Example 8.1
the following cutout of the bytecode is generated:

Double m(Funi1$$<Double,Double>);
descriptor:
(LFun1$$$_$Double$_$Double$_$;)Double;
Integer m(Funl$$<Integer ,Integer>);
descriptor:
(LFun1$$$_$Integer$_$Integer$_$;) Integer;
String m(Funl$$<String,String>);
descriptor:
(LFun1$$$_$String$_$String$_$;)String;

Note that the prefix of the primitive types
(Ljava$lang$) was left out for the sake of read-
ability.

9 The inferred principal type

The principal types for the fields and the
methods of a class are determined as given
in Def. 5.2. The intersections (overload-
ing) of the methods are derived from the el-
ements of the result of the type unification
{{Ty<T]},01), ..., ({Tn<T.,},0n)} and
the bound generics are derived as given in the-
orem 7.13.

As each o; is a general unifier (Theorem 1, [26])
and as during the adaptions of the remaining con-
straints { 7; < T/ } either no solution is lost (build-
ing of family of generated generics, eliminating in-
ner type variables, and equalizing type variables
in contravariant and covariant position) or the re-
ductions are indispensable to get a correct Java
program (remove cycle and eliminate infima) the
determined type is principal.

Java-TX: The language

10 Related Work

Some object-oriented languages like Scala, C#,
and Java perform local type inference [22, 24].
Local type inference means that missing type an-
notations are recovered using only information
from adjacent nodes in the syntax tree without
long distance constraints. For instance, the type
of a variable initialized with a non-functional ex-
pression or the return type of a method can be in-
ferred. However, method argument types, in par-
ticular for recursive methods, cannot be inferred
by local type inference.

Milner’s algorithm W [6, 18] is the gold standard
for global type inference for languages with para-
metric polymorphism, which is used by ML-style
languages. The fundamental idea of the algo-
rithm is to enforce type equality by many-sorted
type unification [17, 31]. This approach is effective
and results in so-called principal types because
many-sorted unification is unitary, which means
that there is at most one most general result.

The presence of subtyping means that type unifi-
cation is no longer unitary, but still finitary. Thus,
there is no longer a single most general type, but
any type is an instance of a finite set of maxi-
mal types. We have given an algorithm for Java
type unification in [26] and proved soundness and
completeness.

PIZZA [21] contained real function types with in-
variant arguments (no subtyping). Function types
similar as in Java-TX are contained in Scala [23].
As shown in [29] our approach preserves the
properties of target typing, while Scala do not
have these properties.

There are different approaches of formal mod-
els of Java. In [13] a formal model of Java is
given, where method-bodies consists of expres-
sions rather than statements. There are two for-
mal models. The first one for Java without gener-
ics and without lambda expressions. The sec-
ond for GJ [5] with generics. In [34] wildcards
are added. Finally, in [2] lambda expressions with
functional interfaces are added.

In [32] we presented an extension of the calcu-
lus in [13] with type inference. This could be con-
sidered as a theorectical base of Java-TX without
wildcards and without lambda expressions.

Ancona, Damiani, Drossopoulou, and Zucca [1]
consider polymorphic byte code. Their approach
is modular in the sense that it infers polymorphic

structural types. As Java does not support struc-
tural types, their approach would have to be sim-
ulated with generated interfaces. In [28] we fol-
lowed this approach. Furthermore Ancona and
coworkers do not consider generic classes.

11 Implementation

A prototypical compiler for Java-TX has been im-
plemented. The compiler is written in Java, itself.
Additionally, an eclipse plugin is offered, present-
ing the full convenience of Java type inference.
The official website is accessible with the following
URL: https://www.hb.dhbw-stuttgart.de/javatx .

12 Summary and Outlook

Within the last 15 years Java has been devel-
oped so as to introduce various concepts from
functional programming languages. In this pa-
per we presented an extension of Java, called
Java-TX. Java-TX continues the range of incorpo-
rating functional programming language features
into Java. We added the feature of global type in-
ference. Global type inference means that Java
programs can be written without any type anno-
tation. Java-TX preserves static typing through a
type inference algorithm which infers a principal
type for all fields and methods.

Subsequently, we showed how global type in-
ference allows the extension of the overloading
mechanism such that not only method identifiers
but also, complete method declaration can be
overloaded.

We discussed the principal type property in
Java-TX and showed that a principal type of meth-
ods is an intersection of function types and that
the type inference algorithm approximately infers
the principal types. There are two restrictions: the
polymorphic recursion and F-bounded polymor-
phism in combination with bounded wildcards.

Another extension of Java-TX is the introduction
of real function types. We offered a number of
examples which show that the lack of real func-
tion types is very harmful. We introduced Scala-
like function types. For lambda expressions we
defined these function types as explicit types. At
the same time we preserved the concept of target
typing for functional interfaces as was proposed in
the so-called strawman approach in order to intro-
duce lambda expressions into Java.

https://www.hb.dhbw-stuttgart.de/javatx

Engineering INSIGHTS

Additionally, we presented a concept for general-
ization for free type variables (generated gener-
ics) which is more powerful than in functional pro-
gramming languages. The remaining type vari-
ables constraints of the type inference were dis-
tributed to the class and its method, respec-
tively.

Finally, we showed that the overloading mech-
anism has some restrictions, caused by the
type erasure (erasure of argument types in
parametrized types during compilation). There-
fore, in Java-TX we achieved an approach for het-
erogeneous translation of function types.

In the future, we plan to introduce a heteroge-
neous translation for all parametrized types. The
following example in Fig. 11 shows that type infer-
ence suggests this.

import java.util.Vector;
import java.lang.Integer;
import java.lang.String;

class VectorAdd {
vectorAdd(vl, v2) {

var i = 0;

var erg = new Vector<>();

while (i < vi.size()) {
erg.addElement (vl.elementAt (i)

+ v2.elementAt (i));

i++;

}

return erg;

Figure 11: Heterogeneous translation

For the method vectorAdd the type

Vector<Integer>Xx Vector<Integer>

—Vector<Integer>
&
Vector<String>Xx Vector<String>
—Vector<String>
is inferred.

But as the type erasure erases the type parame-
ters Integer and String, respectively, the over-
loading of the method vectorAdd cannot be re-
solved.

We shall consider two possible approaches for
solving this problem. On the one hand, we could
follow the PIZZA approach [20] to change the

class loader. On the other hand, we could fol-
low the ideas of [35] in a way similar to what we
did for the function types. In [35] the types with
instantiated parameters are subtypes of the non-
instantiated ones. This approach could lead to a
type hierarchy with multiple inheritance which is
prohibited in Java.

Another feature derived from functional program-
ming languages which has been introduced into
Java in a restricted version is pattern matching.
Pattern matching for the instanceof operator was
introduced in Java 13-16 [8], for the switch-case
instruction in Java 17-19 [4], and for the new
record classes in Java 19 [3]. In PIZZA [21], pat-
tern matching is realized via algebraic data types
for the switch-case statement.

In combination with type inference, an approach
of pattern matching in method headers similar to
that of Haskell could be possible.

References

[1] Davide Ancona et al. “Polymorphic Bytecode:
Compositional Compilation for Java-like Lan-
guages”. In: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL '05. Long
Beach, California, USA: ACM, 2005, pp. 26—
37. 1SBN: 1-58113-830-X. URL: http://doi.
acm.org/10.1145/1040305.1040308.

[2] Lorenzo Bettini et al. “Java & Lambda: A
Featherweight Story”. In: Logical Methods in
Computer Science 14(3:17) (2018), pp. 1-
24.

[3] Gavin Bierman. JEP 405: Record Patterns
(Preview). Updated: 2022/05/24 19:29. 2022.
URL: http://openjdk. java.net/jeps/405.

[4] Gavin Bierman. JEP 427: Pattern Match-
ing for switch (Third Preview). Updated:
2022/05/25 16:51. 2022. URL: http : / /
openjdk. java.net/jeps/427.

[5] Gilad Bracha et al. “Making the Future
Safe for the Past: Adding Genericity to the
Java Programming Language”. In: Proceed-
ings of the 13th ACM SIGPLAN Conference
on Object-oriented Programming, Systems,
Languages, and Applications. OOPSLA ’98.
Vancouver, British Columbia, Canada: ACM,
1998, pp. 183-200. IsBN: 1-58113-005-8.
URL: http://doi.acm.org/ 10 . 1145/
286936 .286957.

http://doi.acm.org/10.1145/1040305.1040308
http://doi.acm.org/10.1145/1040305.1040308
http://openjdk.java.net/jeps/405
http://openjdk.java.net/jeps/427
http://openjdk.java.net/jeps/427
http://doi.acm.org/10.1145/286936.286957
http://doi.acm.org/10.1145/286936.286957

Java-TX: The language

[6] Luis Damas and Robin Milner. “Principal
type-schemes for functional programs”. In:
Proc. 9th Symposium on Principles of Pro-
gramming Languages (1982).

[7] Brian Goetz. JEP 286: Local-Variable Type
Inference. Updated: 2018/10/12 01:28. 2016.
URL: http://openjdk. java.net/jeps/286.

[8] Brian Goetz. JEP 394: Pattern Matching
for instanceof. Updated: 2021/03/01 16:07.
2020. URL: http: //openjdk . java . net/
jeps/394.

[9] Brian Goetz. State of the Lambda. Sept.
2013. URL: http : // cr . openjdk . java .
net/“briangoetz/lambda/lambda- state-
final.html.

[10] James Gosling et al. The Java® Language
Specification. Java SE 8. The Java series.
Addison-Wesley, 2014.

[11] Radu Grigore. “Java generics are turing com-
plete”. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Program-
ming Languages, POPL 2017, Paris, France,
January 18-20, 2017. Ed. by Giuseppe
Castagna and Andrew D. Gordon. ACM,
2017, pp. 73-85. URL: http://dl.acm.org/
citation.cfm?id=3009871.

[12] Fritz Henglein. “Type Inference with Poly-
morphic Recursion”. In: ACM Transactions
on Programming Languages and Systems
(TOPLAS). Vol. 15(2). Apr. 1993, pp. 253—
289.

[13] Atsushi lgarashi, Benjamin C Pierce, and
Philip Wadler. “Featherweight Java: a min-
imal core calculus for Java and GJ”. In:
ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 23.3 (2001),
pp. 396—450.

[14] Andrew Kennedy and Don Syme. “Design
and Implementation of Generics for the .NET
Common Language Runtime”. In: Proceed-
ings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and
Implementation. PLDI °01. Snowbird, Utah,
USA: Association for Computing Machinery,
2001, pp. 1-12. 1SBN: 1581134142. URL:
https://doi.org/10.1145/378795.378797.

[15] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn.
“The undecidablity of the semi-unification
problem”. In: Proceedings 22nd Annual
ACM Symposium on Theory of Computa-
tion (STOC). Baltimore, Maryland, May 1990,
pp. 468—476.

[16] Lambda. Project Lambda: Java Language
Specification draft. Version 0.1.5. 2010. URL:
http : / / mail . openjdk . java . net /
pipermail / lambda - dev / attachments /
20100212 / af8d2cch / attachment - 0001 .
txt.

[17] A. Martelli and U. Montanari. “An Efficient
Unification Algorithm”. In: ACM Transactions
on Programming Languages and Systems 4
(1982), pp. 258—282.

[18] Robin Milner. “A theory of type polymorphism
in programming”. In: Journal of Computer
and System Sciences 17 (1978), pp. 348—
378.

[19] A. Mycroft. “Polymorphic type schemes and
recursive definitions”. In: Proc. 6th Int. Contf.
on Programming. Vol. LNCS 167. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1984,
pp. 217—-228. ISBN: 978-3-540-38809-8.

[20] Martin Odersky, Enno Runne, and Philip
Wadler. “Two Ways to Bake Your Pizza —
Translating Parameterised Types into Java”.
In: Proceedings of a Dagstuhl Seminar,
Springer Lecture Notes in Computer Science
1766 (2000), pp. 114-132.

[21] Martin Odersky and Philip Wadler. “Pizza
into Java: Translating Theory into Practice”.
In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages. POPL '97. Paris,
France: ACM, 1997, pp. 146—159. ISBN: 0-
89791-853-3. URL: http://doi.acm. org/
10.1145/263699.263715.

[22] Martin Odersky, Matthias Zenger, and
Christoph Zenger. “Colored local type infer-
ence”. In: Proc. 28th ACM Symposium on
Principles of Programming Languages 36.3
(2001), pp. 41-53.

[23] Martin Odersky et al. The Scala Language
Specification. Version 2.13. 2019. URL: http:
//www .scala-lang.org/files/archive/
spec/2.13.

[24] Benjamin C. Pierce and David N. Turner. “Lo-
cal type inference”. In: Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. POPL
'98. San Diego, California, United States,
1998, pp. 252—-265.

[25] Martin Plumicke. “Intersection Types in
Java”. In: 6th International Conference on
Principles and Practices of Programming in
Java. Ed. by Luis Veiga et al. Vol. 347. ACM

http://openjdk.java.net/jeps/286
http://openjdk.java.net/jeps/394
http://openjdk.java.net/jeps/394
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
http://dl.acm.org/citation.cfm?id=3009871
http://dl.acm.org/citation.cfm?id=3009871
https://doi.org/10.1145/378795.378797
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt
http://doi.acm.org/10.1145/263699.263715
http://doi.acm.org/10.1145/263699.263715
http://www.scala-lang.org/files/archive/spec/2.13
http://www.scala-lang.org/files/archive/spec/2.13
http://www.scala-lang.org/files/archive/spec/2.13

Engineering INSIGHTS

(26]

(27]

(28]

(29]

(30]

[31]

(32]

International Conference Proceeding Series.
Sept. 2008, pp. 181-188.

Martin Plimicke. “Java type unification with
wildcards”. In: 17th International Conference,
INAP 2007, and 21st Workshop on Logic
Programming, WLP 2007, Wirzburg, Ger-
many, October 4-6, 2007, Revised Selected
Papers. Ed. by Dietmar Seipel, Michael
Hanus, and Armin Wolf. Vol. 5437. Lec-
ture Notes in Artificial Intelligence. Springer-
Verlag Heidelberg, 2009, pp. 223-240.

Martin Plimicke. “More Type Inference in
Java 8”. In: Perspectives of System Infor-
matics - 9th International Ershov Informatics
Conference, PSI 2014, St. Petersburg, Rus-
sia, June 24-27, 2014. Revised Selected Pa-
pers. Ed. by Andrei Voronkov and Irina Virbit-
skaite. Vol. 8974. Lecture Notes in Computer
Science. Springer, 2015, pp. 248-256.

Martin Plimicke. “Structural Type Inference
in Java-like Languages”. In: Gemeinsamer
Tagungsband der Workshops der Tagung
Software Engineering 2016 (SE 2016), Wien,
23.-26. Februar 2016. 2016, pp. 109-113.
URL: http://ceur - ws . org/Vol - 1659/
paper09.pdf.

Martin Plimicke and Andreas Stadelmeier.
“Introducing Scala-like Function Types into
Java-TX". In: Proceedings of the 14th Inter-
national Conference on Managed Languages
and Runtimes. ManLang 2017. Prague,
Czech Republic: ACM, 2017, pp. 23-34.
ISBN: 978-1-4503-5340-3. URL: http://doi.
acm.org/10.1145/3132190.3132203.

Mark Reinhold. Project Lambda: Straw-Man
Proposal. Dec. 2009. URL: http : / / cr .
openjdk . java .net/ “mr /lambda / straw -
man.

J. A. Robinson. “A Machine-Oriented Logic
Based on the Resolution Principle”. In: Jour-
nal of ACM 12(1) (Jan. 1965), pp. 23—41.

Andreas Stadelmeier, Martin Plimicke, and
Peter Thiemann. “Global Type Inference
for Featherweight Generic Java”. In: 36th
European Conference on Object-Oriented
Programming (ECOOP 2022). Ed. by Karim
Ali and Jan Vitek. Vol. 222. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl
— Leibniz-Zentrum far Informatik, 2022,
28:1-28:27. I1SBN: 978-3-95977-225-9. URL:
https : / / drops . dagstuhl . de / opus /
volltexte/2022/16256.

(33]

(34]

[35]

Florian Steurer and Martin Plimicke. “Er-
weiterung und Neuimplementierung der Java
Typunifikation”. In: Proceedings of the 35th
Annual Meeting of the GI Working Group
Programming Languages and Computing
Concepts. Ed. by Jens Knoop, Martin Stef-
fen, and Baltasar Trancon y Widemann. Re-
search Report 482. ISBN 978-82-7368-447-
9, (in german). Faculty of Mathematics and
Natural Sciences, UNIVERSITY OF OSLO.
2018, pp. 134—149.

Mads Torgersen, Erik Ernst, and Christian
Plesner Hansen. “Wild FJ”. In: Proceedings
of FOOL 12. Ed. by Philip Wadler. ACM. Long
Beach, California, USA: School of Informat-
ics, University of Edinburgh, Jan. 2005. URL:
http://homepages.inf.ed.ac.uk/wadler/
fool/.

Vlad Ureche, Cristian Talau, and Martin
Odersky. “Miniboxing: improving the speed
to code size tradeoff in parametric poly-
morphism translations”. In: OOPSLA. 2013,
pp. 73-92.

http://ceur-ws.org/Vol-1559/paper09.pdf
http://ceur-ws.org/Vol-1559/paper09.pdf
http://doi.acm.org/10.1145/3132190.3132203
http://doi.acm.org/10.1145/3132190.3132203
http://cr.openjdk.java.net/~mr/lambda/straw-man
http://cr.openjdk.java.net/~mr/lambda/straw-man
http://cr.openjdk.java.net/~mr/lambda/straw-man
https://drops.dagstuhl.de/opus/volltexte/2022/16256
https://drops.dagstuhl.de/opus/volltexte/2022/16256
http://homepages.inf.ed.ac.uk/wadler/fool/
http://homepages.inf.ed.ac.uk/wadler/fool/

IMPRESSUM

Schriftenreihe INSIGHTS
Themenreihe Engineering INSIGHTS

Herausgeber:

Fakultat Technik der

Dualen Hochschule Baden-Wurttemberg Stuttgart
Postfach 10 05 63, 70004 Stuttgart

Prof. Dr.-Ing. Harald Mandel, Prorektor und Dekan der Fakultat Technik
Jagerstrale 56, 70174 Stuttgart

E-Mail: harald.mandel@dhbw-stuttgart.de
Tel.: +49 711 1849 605
Fax: +49 711 1849 719

www.dhbw-stuttgart.de/technik/insights

Umschlaggestaltung: Kerstin Fail3t
Bildnachweis: Gerd Altmann auf Pixabay bearbeitet von Kerstin Faif3t
ISSN 2193-9098

© Prof. Dr. Martin Plimicke, 2022

Alle Rechte vorbehalten. Der Inhalt dieser Publikation unterliegt dem deutschen Urheberrecht.

Die Vervielfaltigung, Bearbeitung, Verbreitung und jede Art der Verwertung auf3erhalb der Grenzen
des Urheberrechtes bediirfen der schriftlichen Zustimmung der Autoren und des Herausgebers.

Der Inhalt der Publikation wurde mit grof3ter Sorgfalt erstellt. Fir die Richtigkeit, Vollstandigkeit und
Aktualitat des Inhalts Ubernimmt der Herausgeber keine Gewahr.

ISSN 2193-9098

www.dhbw-stuttgart.de/technik/insights

	Insights-Umschlag_mitHausschriften_1_2022_Plümicke_final
	Insight_21_main_final
	Introduction
	The language
	Global type inference for Java-TX
	The type inference algorithm

	Overloading
	Principal type
	Type inference and principal type

	Real function types
	Generalized type variables
	Family of generated generics
	Java-conforming binary relation of type parameters
	Further simplifications

	Heterogeneous translation of function types
	The inferred principal type
	Related Work
	Implementation
	Summary and Outlook

	Insights-Umschlag_mitHausschriften_1_2022_Plümicke_final
	Insights-Umschlag_mitHausschriften_1_2022_Plümicke_final

